John H.G. Macdonald

Bridge-related research at the University of Bristol

Outline of presentation

- BLADE
- · Performance based engineering
- · Site monitoring
- · Dynamics of long-span bridges
- · Other bridge-related research at Bristol
- · Future direction of research

Bristol Laboratories for Advanced Dynamics Engineering (BLADE)

- Due for completion Spring 2004
- £15m grant from Joint Infrastructure Fund
- Integration across Engineering Faculty

BLADE Facilities (1)

- · Earthquake and Large Structures Laboratory
 - Earthquake shaking table
 - Strong floor
 - 5m and 15m high strong walls

BLADE Facilities (2)

- · Dynamics Laboratory
- · Advanced Control and Testing Laboratory
- · Environmental Laboratory
 - Soil mechanics, Composites, High temperature metals
- · Heavy Test and Concrete Laboratory
- · Light Structures Laboratory
 - Fatigue, Aircraft structures
- · Modelling and Simulation Laboratory
- · Workshops and support areas

BLADE Goals

- Develop a viable performance-based engineering framework
- Develop dynamic sub-structuring and other enabling technologies
- Build new knowledge and understanding of systems, non-linear dynamics, materials, control, and risk
- Apply the above to real problems and disseminate

Benefits of site monitoring (of SSC)

- Performance measurement and design of specific solutions
 - Cable vibrations
 - Vortex-induced deck vibrations
- Improved methods of analysis and parameters
 - Values of damping and wind turbulence
 - Methods of wind buffeting analysis
 - Finite Element analysis (static and dynamic)
- Developing tools for long-term management
 - Model updating
 - Structural Health Monitoring

Damping ratios of cable vibrations in relation to wind velocity

- · Theoretical aerodynamic damping matches measured data
- · Structural damping determined (intercept)
- No significant effect of corrosion protection wax

Addition of secondary cables

System identification from ambient vibration measurements

- New method allows for multiple vibration modes, loading spectrum and signal processing distortion
- · Modal parameters identified, including damping
- · Statistical analysis of accuracy

Comparison of FE and measured mode shapes - first mode of SSC half bridge

Plan

Lines from FE model, crosses from site measurements

Cables omitted for clarity

- Measured modes used to assess methods of Finite Element modelling (static and dynamic)
- Possible extension to model updating and Structural Health Monitoring

Second Severn Crossing vortex-induced vibrations - full-scale and final model measurements

 Model corrected for full-scale damping, wind turbulence and vibration mode

SSC deck cross-section showing baffles added to inhibit vortex-induced vibrations

Other bridge-related research at Bristol

- · Vulnerability analysis, systems and risk
- Bridge strengthening with Fibre Reinforced Polymers
- Punching shear failure of concrete slabs
- Active load control of bridges
- · Fatigue of structural materials
- Local non-intrusive corrosion detection
- Multi-support earthquake excitation of long-span bridges
- · Pedestrian-induced vibrations

Future research directions

- · Performance-based engineering
- Integrating behaviour of system components
 - Technical / societal
 - Loading / structural performance (e.g. aerodynamics / non-linear dynamics)
 - Different structural components (e.g. cable-deck, soil-structure, concrete-FRP)
- Dynamic sub-structuring
- · Structural Health Monitoring

